Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.205
Filtrar
1.
Sci Total Environ ; 926: 172133, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569960

RESUMO

Evaluating the impact of global warming on rice production and greenhouse gas (GHG) emissions is critical for ensuring food security and mitigating the consequences of climate change. Nonetheless, the impacts of warming on crop production, GHG emissions, and microbial mechanisms in the single-cropping rice systems remain unclear. Here, a two-year field experiment was conducted to explore the effects of warming (increased by 2.7-3.0 °C on average) in the rice growing season on crop production and functional microorganisms associated with GHG emissions. Results showed that warming resulted in significant reduction (p < 0.01) in the aboveground biomass and grain yield as well as in grain weight, the number of spikelets per panicle, and the seed-setting rate. However, it caused a significant increase (p < 0.01) in the number of panicles by 15.6 % and 34.9 %, respectively. Furthermore, warming significantly increased (p < 0.01) seasonal methane (CH4) emissions but reduced nitrous oxide (N2O) emissions, particularly in 2022.The relative abundance of genes associated with CH4 metabolism and nitrogen metabolism was increased by 40.7 % and 32.7 %, respectively, in response to warming. Moreover, warming had a positive impact on the abundance of genes related to CH4 production and oxidation processes but did not affect the denitrification processes associated with N2O production. These results showed that warming decreased rice yield and biomass in the single cropping rice system but increased CH4 emissions and global warming potential. Taken together, to address the increasing food demand of a growing population and mitigate the impacts of global warming, it is imperative to duce GHG emissions and enhance crop yields.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Oryza/metabolismo , Agricultura/métodos , Aquecimento Global , Produção Agrícola , Óxido Nitroso/análise , Metano/análise , Solo , China
2.
J Agric Food Chem ; 72(15): 8569-8580, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38563891

RESUMO

Rice protein peptides (RPP) are a potentially valuable source of high-quality calcium chelating properties. However, there is a lack of information regarding the calcium-absorption-promoting effect of RPP and its underlying mechanism. The present study adopted molecular docking methodologies to analyze the 10 most potent peptide segments from RPP. Results revealed that the peptide AHVGMSGEEPE (AHV) displayed optimal calcium binding properties (calcium-chelating capacity 55.69 ± 0.66 mg/g). Quantum chemistry analysis revealed that the AHV peptide effectively binds and forms stable complexes with calcium via the carbonyl oxygen atoms in valine at position 3 and the carbonyl of the C-terminal carboxyl group of glutamate at position 11. The spectral analysis results indicated that AHV may bind to calcium through carboxyl oxygen atoms, resulting in a transition from a smooth surface block-like structure to a dense granular structure. Furthermore, this study demonstrated that the 4 mmol/L AHV-Ca chelate (61.75 ± 13.23 µg/well) significantly increases calcium absorption compared to 1 mM CaCl2 (28.57 ± 8.59 µg/well) in the Caco-2 cell monolayer. In terms of mechanisms, the novel peptide-calcium chelate AHV-Ca derived from RPP exerts a cell-level effect by upregulating the expression of TRPV6 calcium-ion-channel-related genes and proteins (TRPV6 and Calbindin-D9k). This study provides a theoretical basis for developing functional foods with the AHV peptide as ingredients to improve calcium absorption.


Assuntos
Cálcio , Oryza , Humanos , Cálcio/metabolismo , Células CACO-2 , Oryza/metabolismo , Simulação de Acoplamento Molecular , Cálcio da Dieta/metabolismo , Peptídeos/química , Oxigênio
3.
Genome Biol ; 25(1): 84, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566207

RESUMO

BACKGROUND: Epigenetic marks are reprogrammed during sexual reproduction. In flowering plants, DNA methylation is only partially remodeled in the gametes and the zygote. However, the timing and functional significance of the remodeling during plant gametogenesis remain obscure. RESULTS: Here we show that DNA methylation remodeling starts after male meiosis in rice, with non-CG methylation, particularly at CHG sites, being first enhanced in the microspore and subsequently decreased in sperm. Functional analysis of rice CHG methyltransferase genes CMT3a and CMT3b indicates that CMT3a functions as the major CHG methyltransferase in rice meiocyte, while CMT3b is responsible for the increase of CHG methylation in microspore. The function of the two histone demethylases JMJ706 and JMJ707 that remove H3K9me2 may contribute to the decreased CHG methylation in sperm. During male gametogenesis CMT3a mainly silences TE and TE-related genes while CMT3b is required for repression of genes encoding factors involved in transcriptional and translational activities. In addition, CMT3b functions to repress zygotic gene expression in egg and participates in establishing the zygotic epigenome upon fertilization. CONCLUSION: Collectively, the results indicate that DNA methylation is dynamically remodeled during male gametogenesis, distinguish the function of CMT3a and CMT3b in sex cells, and underpin the functional significance of DNA methylation remodeling during rice reproduction.


Assuntos
Metilação de DNA , Oryza , Oryza/genética , Oryza/metabolismo , Sementes/metabolismo , Metiltransferases/metabolismo , Gametogênese , Regulação da Expressão Gênica de Plantas
4.
Planta ; 259(5): 115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589536

RESUMO

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Assuntos
Arabidopsis , Oryza , Glicosiltransferases/análise , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , 60613 , Poaceae/metabolismo , Parede Celular/metabolismo
5.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594609

RESUMO

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Assuntos
Arabidopsis , Oryza , Genes de Plantas , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Enxofre/metabolismo , Homeostase , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Raízes de Plantas/metabolismo
6.
Planta ; 259(6): 127, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637411

RESUMO

MAIN CONCLUSION: Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.


Assuntos
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Triticum , Nitrogênio/metabolismo , Fertilizantes , Arabidopsis/metabolismo
7.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38562039

RESUMO

The aroma in rice is the most appreciable quality trait, controlled by the loss of function of the betaine aldehyde dehydrogenase 2 (BADH2) gene. In the present study, indica rice cultivars (basmati, nonbasmati aromatic, and nonaromatic) were screened to explore allelic differences in the BADH2 gene using two functional markers (badh2-p-5'UTR and FMbadh2-E7). Notably, the results of the present mutational analysis showed that both markers confirmed a different mutation in indica rice cultivars than earlier reported japonica accessions. It was found that there is 250-bp deletion in the promoter region of aromatic Kagesali and Kalakrishna as compared to nonaromatic Kolamb. The results of FMbadh2-E7 showed 8-bp deletion and six SNPs in exon 7 of the Kalakrishna cultivar. Interestingly, the nonbasmati aromatic Lalbhat rice cultivar did not harbour any reported mutation and showed a novel BADH2 allele carrying 1-bp deletion in exon 7. Among the selected aromatic rice cultivars, eight cultivars showed mutation in the 5' UTR region and interestingly 23 rice cultivars carried the mutation in both 5' UTR and exon 7 of a BADH2 gene. The 2-acetyl-1-pyrroline (2AP) biosynthesis related metabolites, enzyme assay and gene expression supported mutation in BADH2 gene and expression of 2AP in aromatic rice cultivars under study.


Assuntos
Oryza , Oryza/metabolismo , Odorantes , Alelos , Regiões 5' não Traduzidas , Mutação
8.
Funct Integr Genomics ; 24(2): 70, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565780

RESUMO

Salinization is one of the leading causes of arable land shrinkage and rice yield decline, recently. Therefore, developing and utilizing salt-tolerant rice varieties have been seen as a crucial and urgent strategy to reduce the effects of saline intrusion and protect food security worldwide. In the current study, the CRISPR/Cas9 system was utilized to induce targeted mutations in the coding sequence of the OsDSG1, a gene involved in the ubiquitination pathway and the regulation of biochemical reactions in rice. The CRISPR/Cas9-induced mutations of the OsDSG1 were generated in a local rice cultivar and the mutant inheritance was validated at different generations. The OsDSG1 mutant lines showed an enhancement in salt tolerance compared to wild type plants at both germination and seedling stages indicated by increases in plant height, root length, and total fresh weight as well as the total chlorophyll and relative water contents under the salt stress condition. In addition, lower proline and MDA contents were observed in mutant rice as compared to wild type plants in the presence of salt stress. Importantly, no effect on seed germination and plant growth parameters was recorded in the CRISRP/Cas9-induced mutant rice under the normal condition. This study again indicates the involvement of the OsDSG1 gene in the salt resistant mechanism in rice and provides a potential strategy to enhance the tolerance of local rice varieties to the salt stress.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Sistemas CRISPR-Cas , Oryza/metabolismo , Estresse Salino , Mutação
9.
Pestic Biochem Physiol ; 200: 105836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582598

RESUMO

The striped stem borer, Chilo suppressalis (Walker), a notorious pest infesting rice, has evolved a high level of resistance to many commonly used insecticides. In this study, we investigate whether tyrosine hydroxylase (TH), which is required for larval development and cuticle tanning in many insects, could be a potential target for the control of C. suppressalis. We identified and characterized the full-length cDNA (CsTH) of C. suppressalis. The complete open reading frame of CsTH (MW690914) was 1683 bp in length, encoding a protein of 560 amino acids. Within the first to the sixth larval instars, CsTH was high in the first day just after molting, and lower in the ensuing days. From the wandering stage to the adult stage, levels of CSTH began to rise and reached a peak at the pupal stage. These patterns suggested a role for the gene in larval development and larval-pupal cuticle tanning. When we injected dsCsTH or 3-iodotyrosine (3-IT) as a TH inhibitor or fed a larva diet supplemented with 3-IT, there were significant impairments in larval development and larval-pupal cuticle tanning. Adult emergence was severely impaired, and most adults died. These results suggest that CsTH might play a critical role in larval development as well as larval-pupal tanning and immunity in C. suppressalis, and this gene could form a potential novel target for pest control.


Assuntos
Inseticidas , Mariposas , Oryza , Animais , Larva/genética , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Pupa , Mariposas/metabolismo , Oryza/metabolismo
10.
Pestic Biochem Physiol ; 199: 105768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458677

RESUMO

Plant pathogenic bacteria can cause numerous diseases for higher plants and result in severe reduction of crop yield. Introduction of new bactericides can always effectively control these plant diseases. Benziothiazolinone (BIT) is a novel fungicide registered in China for the control of plant fungal diseases, however, its anti-bacterial activity is not well studied. The results of activity tests showed that BIT exhibited stronger inhibitory activity against bacteria, particularly for Xanthomonas oryzae pv. oryzae (Xoo) (EC50 = 0.17 µg/mL), which was superior than that of the tested fungi in vitro. BIT also exhibited excellent protective and curative activity against rice bacterial leaf blight (BLB) caused by Xoo with the control efficacies of 71.37% and 91.64% at 600 µg/mL, respectively. After treatment with BIT, Xoo cell surface became wrinkled and the cell shape was distorted with extruding cellular content. It was also found that BIT decreased DNA synthesis and affected the biofilm formation and motility of Xoo cells. However, no significant change in the protein content was observed. Moreover, the results of quantitative real-time PCR also showed that expressions of several genes related to DNA synthesis, biofilm formation and motility of Xoo cells were down- or up-regulated, which further proved the anti-bacterial activity of BIT in influencing the biological properties of Xoo. Additionally, BIT also enhanced the activity of phenylalanine ammonia lyase (PAL), a plant defense enzyme. Taken together, benziothiazolinone might be served as an alternative candidate for the control of BLB.


Assuntos
Oryza , Xanthomonas , Antibacterianos/farmacologia , DNA , China , Oryza/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
Nutrients ; 16(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542792

RESUMO

Corona Virus Disease 19 (COVID-19) has been a major pandemic impacting a huge population worldwide, and it continues to present serious health threats, necessitating the development of novel protective nutraceuticals. Biobran/MGN-3, an arabinoxylan rice bran, is a potent immunomodulator for both humans and animals that has recently been demonstrated to protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We here investigate Biobran/MGN-3's potential to enhance an antiviral immune response in humans. Peripheral blood mononuclear cells (PBMCs) derived from eight subjects taking Biobran/MGN-3 (age 55-65 years) and eight age-matched control subjects were stimulated with irradiated SARS-CoV-2 virus and then subjected to immuno-phenotyping and multiplex cytokine/chemokine assays. Results showed that PBMCs from subjects supplemented with Biobran/MGN-3 had significantly increased activation of plasmacytoid dendritic cells (pDCs) coupled with increased IFN-α secretion. We also observed higher baseline expression of HLA-DR (human leukocyte antigen-DR isotype) on dendritic cells (DCs) and increased secretion of chemokines and cytokines, as well as a substantial increase in cytotoxic T cell generation for subjects taking Biobran/MGN-3. Our results suggest that Biobran/MGN-3 primes immunity and therefore may be used for boosting immune responses against SARS-CoV-2 infections and other diseases, particularly in high-risk populations such as the elderly.


Assuntos
COVID-19 , Oryza , Xilanos , Animais , Humanos , Idoso , Pessoa de Meia-Idade , Oryza/metabolismo , Leucócitos Mononucleares/metabolismo , Citocinas/metabolismo
12.
Plant Cell Rep ; 43(4): 88, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461436

RESUMO

KEY MESSAGE: The homolog gene of the Growth Arrest and DNA Damage-inducible 45 (GADD45) in rice functions in the regulation of plant architecture, grain yield, and blast resistance. The Growth Arrest and DNA Damage-inducible 45 (GADD45) family proteins, well-established stress sensors and tumor suppressors in mammals, serve as pivotal regulators of genotoxic stress responses and tumorigenesis. In contrast, the homolog and role of GADD45 in plants have remained unclear. Herein, using forward genetics, we identified an activation tagging mutant AC13 exhibited dwarf characteristics resulting from the loss-of-function of the rice GADD45α homolog, denoted as OsGADD45a1. osgadd45a1 mutants displayed reduced plant height, shortened panicle length, and decreased grain yield compared to the wild-type Kitaake. Conversely, no obvious differences in plant height, panicle length, or grain yield were observed between wild-type and OsGADD45a1 overexpression plants. OsGADD45a1 displayed relatively high expression in germinated seeds and panicles, with localization in both the nucleus and cytoplasm. RNA-sequencing analysis suggested a potential role for OsGADD45a1 in the regulation of photosynthesis, and binding partner identification indicates OsGADD45a1 interacts with OsRML1 to regulate rice growth. Intriguingly, our study unveiled a novel role for OsGADD45a1 in rice blast resistance, as osgadd45a1 mutant showed enhanced resistance to Magnaporthe oryzae, and the expression of OsGADD45a1 was diminished upon blast fungus treatment. The involvement of OsGADD45a1 in rice blast fungus resistance presents a groundbreaking finding. In summary, our results shed light on the multifaceted role of OsGADD45a1 in rice, encompassing biotic stress response and the modulation of several agricultural traits, including plant height, panicle length, and grain yield.


Assuntos
Oryza , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Sementes/genética , Sementes/metabolismo , Oryza/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
13.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466444

RESUMO

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Assuntos
Arsênio , Basidiomycota , Metais Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Raízes de Plantas/metabolismo
14.
Plant Cell Rep ; 43(4): 100, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498220

RESUMO

KEY MESSAGE: The blast resistance allele of OsBsr-d1 does not exist in most japonica rice varieties of Jilin Province in China. The development of Bsr-d1 knockout mutants via CRISPR/Cas9 enhances broad-spectrum resistance to rice blast in Northeast China. Rice blast is a global disease that has a significant negative impact on rice yield and quality. Due to the complexity and variability of the physiological races of rice blast, controlling rice blast is challenging in agricultural production. Bsr-d1, a negative transcription factor that confers broad-spectrum resistance to rice blast, was identified in the indica rice cultivar Digu; however, its biological function in japonica rice varieties is still unclear. In this study, we analyzed the blast resistance allele of Bsr-d1 in a total of 256 japonica rice varieties from Jilin Province in Northeast China and found that this allele was not present in these varieties. Therefore, we generated Bsr-d1 knockout mutants via the CRISPR/Cas9 system using the japonica rice variety Jigeng88 (JG88) as a recipient variety. Compared with those of the wild-type JG88, the homozygous Bsr-d1 mutant lines KO#1 and KO#2 showed enhanced leaf blast resistance at the seedling stage to several Magnaporthe oryzae (M. oryzae) races collected from Jilin Province in Northeast China. Physiological and biochemical indices revealed that the homozygous mutant lines produced more hydrogen peroxide than did JG88 plants when infected with M. oryzae. Comparative RNA-seq revealed that the DEGs were mainly involved in the synthesis of amide compounds, zinc finger proteins, transmembrane transporters, etc. In summary, our results indicate that the development of Bsr-d1 knockout mutants through CRISPR/Cas9 can enhance the broad-spectrum resistance of rice in Northeast China to rice blast. This study not only provides a theoretical basis for disease resistance breeding involving the Bsr-d1 gene in Northeast China, but also provides new germplasm resources for disease-resistance rice breeding.


Assuntos
Magnaporthe , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Melhoramento Vegetal , Alelos , Fatores de Transcrição/genética , Oryza/genética , Oryza/metabolismo , Resistência à Doença/genética , Doenças das Plantas/genética
15.
Plant Physiol Biochem ; 209: 108565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537380

RESUMO

Numerous studies have clarified the impacts of magnesium (Mg) on leaf photosynthesis from the perspectives of protein synthesis, enzymes activation and carbohydrate partitioning. However, it still remains largely unknown how stomatal and mesophyll conductances (gs and gm, respectively) are regulated by Mg. In the present study, leaf gas exchanges, leaf hydraulic parameters, leaf structural traits and cell wall composition were examined in rice plants grown under high and low Mg treatments to elucidate the impacts of Mg on gs and gm. Our results showed that reduction of leaf photosynthesis under Mg deficiency was mainly caused by the decreased gm, followed by reduced leaf biochemical capacity and gs, and leaf outside-xylem hydraulic conductance (Kox) was the major factor restricting gs under Mg deficiency. Moreover, increased leaf hemicellulose, lignin and pectin contents and decreased cell wall effective porosity were observed in low Mg plants relative to high Mg plants. These results suggest that Kox and cell wall composition play important roles in regulating gs and gm, respectively, in rice plants under Mg shortages.


Assuntos
Deficiência de Magnésio , Oryza , Oryza/metabolismo , Estômatos de Plantas/fisiologia , Água/metabolismo , Folhas de Planta/metabolismo , Fotossíntese/fisiologia , Células do Mesofilo/metabolismo , Dióxido de Carbono/metabolismo
16.
Planta ; 259(5): 106, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554181

RESUMO

MAIN CONCLUSION: The up-regulation of OsmiR5519 results in the decrease of grain size, weight and seed setting rate. OsmiR5519 plays important roles in the process of grain filling and down-regulates sucrose synthase gene RSUS2. MicroRNAs (miRNAs) are one class of small non-coding RNAs that act as crucial regulators of plant growth and development. In rice, the conserved miRNAs were revealed to regulate the yield components, but the function of rice-specific miRNAs has been rarely studied. The rice-specific OsmiR5519 was found to be abundantly expressed during reproductive development, but its biological roles remain unknown. In this study, the function of rice-specific OsmiR5519 was characterized with the miR5519-overexpressing line (miR5519-OE) and miR5519-silenced line (STTM5519). At seedling stage, the content of sucrose, glucose and fructose was obviously lower in the leaves of miR5519-OE lines than those of wild-type (WT) line. The grain size and weight were decreased significantly in miR5519-OE lines, compared to those of WT rice. The cell width of hull in miR5519-OE was smaller than that in WT. The seed setting rate was notably reduced in miR5519-OE lines, but not in STTM5519 lines. Cytological observation demonstrated that the inadequate grain filling was the main reason for the decline of seed setting rate in miR5519-OE lines. The percentage of the defects of grain amounted to 40% in miR5519-OE lines, which almost equaled to the decreased value of seed setting rate. Furthermore, the sucrose synthase gene RSUS2 was identified as a target of OsmiR5519 via RNA ligase-mediated 3'-amplification of cDNA ends (3'-RLM-RACE), dual luciferase assays and transient expression assays. In summary, our results suggest that OsmiR5519 regulates grain size and weight and down-regulates RSUS2 in rice.


Assuntos
Glucosiltransferases , MicroRNAs , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível , Sementes , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Science ; 383(6687): eadk8838, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452087

RESUMO

Crop yield potential is constrained by the inherent trade-offs among traits such as between grain size and number. Brassinosteroids (BRs) promote grain size, yet their role in regulating grain number is unclear. By deciphering the clustered-spikelet rice germplasm, we show that activation of the BR catabolic gene BRASSINOSTEROID-DEFICIENT DWARF3 (BRD3) markedly increases grain number. We establish a molecular pathway in which the BR signaling inhibitor GSK3/SHAGGY-LIKE KINASE2 phosphorylates and stabilizes OsMADS1 transcriptional factor, which targets TERMINAL FLOWER1-like gene RICE CENTRORADIALIS2. The tissue-specific activation of BRD3 in the secondary branch meristems enhances panicle branching, minimizing negative effects on grain size, and improves grain yield. Our study showcases the power of tissue-specific hormonal manipulation in dismantling the trade-offs among various traits and thus unleashing crop yield potential in rice.


Assuntos
Brassinosteroides , Grão Comestível , Oryza , Proteínas de Plantas , Brassinosteroides/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Physiol Biochem ; 208: 108527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484682

RESUMO

Sewage sludge (SS) disposal poses environmental concerns, yet its organic matter, macro- and micronutrients, make it potentially beneficial for enhancing soil quality and crop yield. This study focuses on three types of SS: "R10" (SS1), which is commonly used in agricultural practices, and two environmentally friendlier options (SS2 and SS3), as alternatives to mineral fertilizer (urea) for rice cultivation. A pot experiment was conducted to investigate the ecophysiological, biochemical, and molecular responses of rice at three different growth stages. SS application led to a significant increase in biomass production (particularly SS3), along with increased nitrogen (N) levels. Enhanced chlorophyll content was observed in SS-treated plants, especially during inflorescence emergence (with the highest content in SS3 plants). At the ecophysiological and biochemical levels, SS treatments did not adversely affect plant health, as evidenced by unchanged values of maximal PSII photochemical efficiency and malondialdehyde by-products. At biochemical and gene expression levels, antioxidant enzyme activities showed transient variations, likely related to physiological adjustments rather than oxidative stress. Ascorbic acid and glutathione did not significantly vary. This study concludes that the use of SS in soil can be a viable alternative fertilizer for rice plants, with positive effects on biomass, chlorophyll content, and no adverse effects on plant health. Among the tested SSs, SS3 showed the most positive effect, even compared to commercial fertilizer. These results suggest that SS application could improve rice yield while addressing environmental concerns surrounding SS disposal.


Assuntos
Oryza , Poluentes do Solo , Oryza/metabolismo , Esgotos/química , Fertilizantes/análise , Solo/química , Clorofila/metabolismo , Poluentes do Solo/metabolismo , Minerais/metabolismo
19.
Sci Total Environ ; 925: 171670, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485020

RESUMO

Many studies investigate the plant uptake and metabolism of xenobiotics by hydroponic experiments, however, plants grown in different conditions (hydroponic vs. soil) may result in different behaviors. To explore the potential differences, a comparative study on the uptake, translocation and metabolism of the fungicide phenamacril in crops (wheat/rice) under hydroponic and soil cultivation conditions was conducted. During 7-14 days of exposure, the translocation factors (TFs) of phenamacril were greatly overestimated in hydroponic-wheat (3.6-5.2) than those in soil-wheat systems (1.1-2.0), with up to 3.3 times of difference between the two cultivation systems, implying it should be cautious to extrapolate the results obtained from hydroponic to field conditions. M-144 was formed in soil pore water (19.1-29.9 µg/L) in soil-wheat systems but not in the hydroponic solution in hydroponics; M-232 was only formed in wheat shoots (89.7-103.0 µg/kg) under soil cultivation conditions, however, it was detected in hydroponic solution (20.1-21.2 µg/L), wheat roots (146.8-166.0 µg/kg), and shoots (239.2-348.1 µg/kg) under hydroponic conditions. The root concentration factors (RCFs) and TFs of phenamacril in rice were up to 2.4 and 3.6 times higher than that in wheat for 28 days of the hydroponic exposure, respectively. These results highlighted that cultivation conditions and plant species could influence the fate of pesticides in crops, which should be considered to better assess the potential accumulation and transformation of pesticides in crops.


Assuntos
Cianoacrilatos , Oryza , Praguicidas , Poluentes do Solo , Hidroponia , Solo , Produtos Agrícolas/metabolismo , Praguicidas/metabolismo , Triticum/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
20.
Plant Physiol Biochem ; 208: 108513, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513519

RESUMO

Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.


Assuntos
Resistência à Seca , Oryza , Oryza/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fotossíntese , Secas , Polirribossomos/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...